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ABSTRACT
Internet of Things (IoT) devices are increasingly found in every-

day homes, providing useful functionality for devices such as TVs,

smart speakers, and video doorbells. Along with their benefits come

potential privacy risks, since these devices can communicate infor-

mation about their users to other parties over the Internet. However,

understanding these risks in depth and at scale is difficult due to

heterogeneity in devices’ user interfaces, protocols, and functional-

ity.

In this work, we conduct a multidimensional analysis of infor-

mation exposure from 81 devices located in labs in the US and

UK. Through a total of 34,586 rigorous automated and manual con-

trolled experiments, we characterize information exposure in terms

of destinations of Internet traffic, whether the contents of com-

munication are protected by encryption, what are the IoT-device

interactions that can be inferred from such content, and whether

there are unexpected exposures of private and/or sensitive informa-

tion (e.g., video surreptitiously transmitted by a recording device).

We highlight regional differences between these results, potentially

due to different privacy regulations in the US and UK. Last, we

compare our controlled experiments with data gathered from an in
situ user study comprising 36 participants.

1 INTRODUCTION
Consumer Internet of Things (IoT) devices are gaining popularity

(expected to number 20 billion by 2020 [13]), offering services such

as personal digital assistants, home security, and climate control.

By combining rich sensors (e.g., cameras, microphones, motion

sensors) and Internet connectivity, these devices have the potential

to learn and expose extensive information about their users and

their surrounding environment. Much of this information has ma-

jor privacy implications, e.g., when devices surreptitiously record

audio [9, 48] and user’s TV viewing habits [32], then share this infor-

mation over the Internet with device manufacturers and unknown

third parties in different countries with different privacy regula-

tions. As most of these devices lack any interfaces that indicate

information exposure, there is an urgent need for research that pro-

vides transparency into such exposure at scale, and that identifies

relevant privacy implications within different jurisdictions.
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There are several key challenges that limit our understanding

of information exposure from IoT devices and their privacy impli-

cations. First, IoT device ecosystems are generally closed, hence

ground truth about information exposure is not readily available.

In particular, for the vast majority of devices in our experiments, it

is not feasible to modify the device firmware (e.g., to conduct taint

tracking) and/or use man-in-the-middle techniques to decrypt TLS

connections (e.g., to identify personal information exposed in plain-

text). In the absence of ground truth, we must develop strategies to

analyze information exposure; namely, we focus on using inferences

based on information contained in (potentially encrypted) network

traffic flows. Second, characterizing IoT information exposure at

scale is cumbersome: it requires manually setting up large numbers

of devices, using carefully controlled interactions with them, and

capturing the salient network traffic they generate. Unlike in the

mobile and web environments, where information exposure analy-

sis is facilitated by existing emulation and automation tools, there is

a need for new techniques for automating IoT device experiments,

gathering their data, and analyzing them. Third, all previous studies
focused on information exposure based on interactions with IoT

devices from a research team in one jurisdiction. There is a need

to understand how the same devices behave in jurisdictions with

different privacy laws, and when used by larger numbers of users.

In this paper, we address these challenges by providing an in-

depth analysis of information exposure from 81 devices located in

our labs in the US and UK. Through rigorous automated and man-

ual controlled experiments, we characterize information exposure

in terms of destinations of Internet traffic, whether the contents

of communication are protected by encryption, what are the IoT

device interactions that can be inferred from such contents, and

whether there are unexpected exposures of private and/or sensitive

information (e.g., video surreptitiously transmitted by a recording

device). Further, we determine whether there are regional differ-

ences between these properties, as the privacy regulations in the

US (enforced by the FTC) and UK (GDPR) can have substantial

impact on data collection. Last, we compare our controlled experi-

ments with data gathered from an in situ uncontrolled experiment

comprising 36 participants.

The highlights of our research findings include the following.

Using 34,586 controlled experiments, we find that 72/81 devices

have at least one destination that is not a first party (i.e., belonging

to the device manufacturer), 56% of the US devices and 83.8% of

the UK devices contact destinations outside their region, all devices

expose information to eavesdroppers via at least one plaintext

flow, and a passive eavesdropper can reliably infer user and device

behavior from the traffic (encrypted or otherwise) of 30/81 devices.

https://doi.org/10.1145/3355369.3355577
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Figure 1: US IoT lab (Northeastern), configured like a studio
apartment that contains a large set of consumer IoT devices.

To understand how the devices behave outside of controlled

experiments, wemade the US lab devices available to 36 participants

for six months in an IRB-approved user study, where such devices

are used in a studio-apartment setting (see Fig. 1). At the end of the

study, we found cases of devices exhibiting unexpected behaviors.

For example, a video doorbell sends video recordings to its service

provider based on movement sensors, without any notification or

consent from recorded parties.

Our key research contributions include:

• Analysis of what we believe is the largest collection of popular

consumer IoT devices to date.

• Semi-automated controlled experiments that enable device anal-

ysis at scale, plus six-months of uncontrolled experiments as

part of an IRB-approved study.

• The first apples-to-apples comparison of device behavior in ju-

risdictions subject to different privacy laws.

• Using the above testbed features to analyze destinations of net-

work traffic, measure what information is exposed to other par-

ties over the Internet, evaluate how well device interactions can

be predicted based on network traffic.

• Analyzing idle traffic to detect unexpected device activity.

To facilitate additional research into consumer IoT devices, and to

help scale analysis to additional jurisdictions, we make our IoT mea-

surement and analysis code and data from controlled experiments

publicly available at https://github.com/NEU-SNS/intl-iot.

2 DEFINITIONS AND GOALS
This work measures network activity and corresponding informa-

tion exposure (defined in §2.1) from popular consumer IoT devices.

In particular, we focus on characteristics of the destinations of their

IP traffic, whether such traffic is protected via encryption, and what

are the potential privacy implications of this exposure. We define

our key research questions and privacy concerns in §2.2.

2.1 Definitions
Information exposed by IoT devices. For the purpose of this

study, we define three categories of information that can be exposed

by IoT devices. This list is not exhaustive; rather, we focus on base-

line information exposure detectable using controlled experiments

and network traffic analysis.

• Stored data. This can include device identifiers and personally

identifiable information given by the user during device activa-

tion, activity logs, device state, etc.

• Sensor data. This consists of information obtained by the sen-

sors of an IoT device, e.g., motion detection, video surveillance

footage, audio recording.

• Activity data. This comprises information about how a user

interacted with a device (e.g., via an app on a mobile device or a

button on the IoT device) and what functionality of the device

has been used (e.g., toggling a light).

Parties to which information is exposed. When informa-

tion is exposed by an IoT device, it is explicitly shared with the

destination of its IP traffic and implicitly shared with any party

passively observing its network traffic. We begin by defining first,
support, and third parties based on the owner of the IP address being
contacted by an IoT device.

• First party. Manufacturer of the IoT device or a related company

responsible for fulfilling the device functionality.

• Support party. Any company providing outsourced computing

resources, such as CDN and cloud providers.

• Third party. Any party that is not a first or support party. This

includes advertising and analytics companies.

In addition to the destination of IP traffic, we consider network
eavesdroppers that can passively observe information exposed by

IoT devices, such as the device’s Internet service provider (ISP).

Privacy concerns. A “non-first party” is defined as any sup-

port party, or any third party. To understand whether information

exposure has privacy implications, we consider:

• any personally identifiable information (PII) contained in net-

work traffic and exposed to a non-first party;

• any recordings of users (audio/video/image) or user activity

(motion sensors, television viewing habits) exposed to non-first

parties, or exposed to a first party in a way that is neither dis-

closed nor expected by an average user;

• any collection of network traffic that allows a non-first party to

observe devices in a home, when they are used, and how they

are used (e.g., for profiling users).

2.2 Goals
In this section, we define our key research questions concerning

different information exposures.

RQ1: What is the destination of network traffic?
Communication with third parties can be a privacy concern because

such parties can track information about users, possibly with the

intent to monetize the data (e.g., through ads). Moreover, support
parties that serve multiple IoT devices (including those from dif-

ferent manufacturers) may gain detailed visibility into activities

within a home. Finally, data traversing international boundaries

may be subject to different privacy laws, including lawful intercept

regulations.

RQ2: To what extent is the traffic encrypted?

https://github.com/NEU-SNS/intl-iot
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Use of encryption can prevent exposure of sensitive information

to eavesdroppers, while lack of encryption could expose the iden-

tity of a device, interactions with the device, and other sensitive

information.

RQ3: What data is sent in plaintext?
When plaintext network traffic contains sensitive data (see §2.1),

we consider it a privacy concern. Examples include personally

identifiable information (name, location, e-mail address), devices

identifiers, and credentials that can be used for unauthorized access

to a device and/or its data.

RQ4: What content is sent using encryption?
While traditionally considered to provide confidentiality, encryp-

tion alone does not prevent the exposure of sensitive information.

For example, sensitive data may be exposed to third party via en-

cryption, or an eavesdropper may reliably infer the devices types

and activities based on encrypted traffic patterns and plaintext

protocol information (e.g., TCP/IP headers, TLS handshakes).

RQ5: Does a device expose information unexpectedly?
This research question is inspired by recent reports indicating that

smart speakers surreptitiously and continuously recorded audio

and streamed it their providers [9, 48]. More generally, we focus

on sensitive information (e.g., user recordings) that the user ex-

pects to be exposed only via explicit interaction (e.g., keywords for

smart speakers, doorbell ringing for video doorbell). This becomes

a privacy concern when it is exposed to any party—even a first

party—when a user did not intentionally trigger this exposure.

RQ6: Does the device’s location (jurisdiction, location of net-
work egress) impact information exposure?
IoT devices may be permitted to expose more or less information de-

pending on regional regulations (e.g., GDPR in the EU). Differences

in exposure for the same devices located in, or whose network traf-

fic egresses out of, different jurisdictions may indicate adaptation

to local laws.

2.3 Non-Goals
Unmodified devices. We use only unmodified devices in our

experiments.Modifying devices or their firmwaremay reveal ground

truth about information exposure, but doing so is not scalable to

large numbers of devices (and not feasible with many of them).

No use of MITM. We do not man-in-the-middle (MITM) TLS

connections to reveal the plaintext content of encrypted traffic. Our

preliminary work on this topic showed that using MITM most of

the time fails and, when successful, it did not reveal much additional

useful information. Worse, MITM attempts often affected device

functionality and behavior (i.e., devices would malfunction due to

TLS connection rejection). Since MITM affected the validity of our

results by changing device behavior, we opted not to do so for this

study.

No companion apps traffic. We capture all network traffic in

our labs, including those from companion apps used to interact with

IoT devices. However, since we found little additional information

exposure beyond what has been found using prior techniques [23,

35, 37], we focus only on the traffic generated by IoT devices.

Incompleteness. We cannot identify all information exposed,

privacy-related or otherwise, from the IoT devices in our tests.

Further, we cannot quantify the privacy risk for the information

exposure we measure, because risk is subjective and we often lack

ground truth. Rather, we focus on information exposed, potential

privacy implications, and case studies of unexpected exposure of

sensitive data.

3 DATA COLLECTION METHODOLOGY
This section covers our data collection methodology. We describe

the devices under test, the labs in which we conduct experiments,

and the experimental methods we use to capture information expo-

sure from the devices. Collectively, we conduct 34,586 repeatable

experiments on 81 devices in two labs (one in the US at Northeastern

University’s Mon(IoT)r Lab and one in the UK at Imperial College

London) over one month, and include six months of data gathered

from an ongoing IRB-approved study involving 36 participants.

3.1 IoT Devices
Our analysis covers 81 IoT devices with IP connectivity: 46 pur-

chased from US stores (US devices) and deployed in our US testbed,

35 purchased from UK stores (UK devices) and deployed in our UK

testbed. There are 26 common devices across the two labs (i.e., a

device with a given model name is in both labs). The devices belong

to the following categories (summarized in Table 1): cameras (secu-
rity cameras and video doorbells), smart hubs (home automation

devices which act as bridges for non-IP IoT devices, such as Zig-

bee, Z-wave, and Insteon devices), home automation (smart lights,

outlets, and thermostats), TVs (actual TVs and TV dongles), au-
dio (smart speakers with voice assistant), and appliances (fridges,
cleaning appliances, cooking appliances, weather stations).

We selected devices based on the following factors: First, we

picked devices that cover a broad range of categories. Second, for

each category of device we searched popular retail websites (e.g.,

Amazon) for availability and selected based on price, popularity, and

customer ratings, much like we expect an average consumer would

dowhen buying an IoT device. Third, we biased our selection toward

devices that are both available to the US and UK market to enable

direct comparison of device behaviors in different jurisdictions.

Fourth, we acquired several wireless devices (light bulbs, smart

locks, light switches) that require smart hubs to use Internet so we

can test those hubs.

3.2 Testbeds
The devices are deployed in testbeds in the US and UK, using iden-

tical data-collection and experiment infrastructure.

Network. Both testbeds include a server that provides network

connectivity and data collection. The server in each testbed is con-

figured identically, consisting of a Linux server running Ubuntu

18.06 with two wired network interfaces (one for the Internet con-

nectivity with a public IP address, one for the IoT devices under

test using a private network address space), and twoWi-Fi adapters

bridged with the wired IoT network for the wireless IoT devices

under test (one for 2.4GHz devices and one for 5GHz devices). Mul-

tiple wired IoT devices are connected to the wired IoT network

using a network switch. IoT devices communicate with the public

Internet via a standard NAT implemented at the server.

To test the impact of egress IP address on information exposure,

we configured VPN tunnels that connect the US lab to the UK lab

and vice versa. Network traffic traverses these tunnels only during

experiments labeled VPN.
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Category Cameras Smart Hubs Home Automation TV Audio Appliances

Devices
NUS=46

NUK=35

NUS∩UK=26

NUS∪UK=81

Amazon Cloudcam

Amcrest Cam

Blink Cam

Blink Hub

Bosiwo Cam

D-Link Cam

Lefun Cam

Luohe Cam

Microseven Cam

Ring Doorbell

Wansview Cam

WiMaker Spy Camera

Xiaomi Cam

Yi Cam

ZModo Doorbell

Insteon

Lightify

Philips Hue

Sengled

Smartthings

Wink 2

Xiaomi

D-Link Mov Sensor

Flux Bulb

Honeywell T-stat

Magichome Strip

Nest T-stat

Philips Bulb

TP-Link Bulb

TP-Link Plug

WeMo Plug

Xiaomi Strip

Apple TV

Fire TV

LG TV

Roku TV

Samsung TV

Allure with Alexa

Echo Dot

Echo Spot

Echo Plus

Google Home Mini

Google Home

Invoke with Cortana

Anova Sousvide

Behmor Brewer

GE Microwave

Netatmo Weather

Samsung Dryer

Samsung Fridge

Samsung Washer

Smarter Brewer

Smarter iKettle

Xiaomi Cleaner

Xiaomi Rice Cooker

Purpose

Devices offering or supporting

a camera that can be accessed

remotely such as smart cameras

and doorbells.

Devices designed to

integrate non-Wi-Fi

wireless devices into

an IP network.

Wi-Fi sensors and actu-

ators such as switches,

bulbs, movement sensors.

Smart TVs and

devices designed to

connect to TVs via

HDMI.

Smart speakers offering a

voice assistant.

Home appliances that offer

remote control.

Interaction
Experi-
ments

Move in front of camera, watch

remotely, record video, take pic-

ture, ring (doorbells).

Turn on/off, change

brightness/color,

move in front of

movement sensor.

Turn on/off, change bright-

ness/color, move in front of

movement sensor, change

temperature (thermostats).

Browse menu, voice

command, change

volume.

Voice command, change vol-

ume.

Start, stop, change temper-

ature, view inside (fridge),

voice/volume (fridge).

Table 1: IoT devices under test. From top to bottom: IoT devices by category, their common purpose within the category, and
the interaction experiments we performed (if available) on all the devices within the category. Flags indicate the presence of
the device in the US, UK, or both testbeds.

Data collection. All the traffic traversing the testbed’s network

gateway server is automatically captured using tcpdump, using

different files for eachMAC address to separate traffic from different

devices. We specify labels (stored in additional pcap files) to isolate

the traffic produced during specific interactions with the device

(e.g., “turn on the smart light”). Our testbed supports labels that

are manually or automatically added, depending on whether the

corresponding experiment is manual or automated.

Ancillary devices for interaction. Our experiments involve

manual and automated interactions. For IoT devices that require a

companion app, we use Nexus 5X smartphones running Android

6.0.1. Similarly, for IoT devices that require a voice assistant, we

use the Echo Spot (powered by Alexa).

A key enabling factor for the large scale of our measurement

experiments is automation. We automate IoT device interactions

via their apps using the Monkey Application Exerciser included in

Android Studio. For interactions via voice assistants (e.g., Alexa,

Cortana), we need a way to produce speech using the same com-

mand words and same voice across both labs. For this, we use the

cloud-based Google voice synthesizer to generate voice commands

based on text specified in automated experiments, and play those

commands over a loudspeaker located near a voice assistant device

(e.g., Echo Spot).

3.3 Experiments
We conduct controlled, idle, and uncontrolled experiments to ana-

lyze the information exposed by devices under different conditions.

The controlled (power, interaction) and the idle experiments were

performed both in the US and the UK testbed during April 2019,

with device firmware and companion apps updated to the latest

version. All the controlled and idle experiments were repeated over

the VPN tunnel, thus giving UK connectivity to the US-based IoT

devices, and US connectivity to the UK IoT devices. User accounts

for all UK and US devices were created in the same country as

the lab in which they were deployed. In total we performed 34,586

controlled experiments (20,777 using the US testbed, and 13,809

using the UK testbed), plus 112 hours of idle experiments.

Power experiments. During our preliminary study we found

that most IoT devices exchange a considerable amount of traffic

when they are powered on. Thus, our power experiments consist

of powering on the device (previously disconnected from the AC

power) and collecting network traffic for two minutes without

any interaction. We manually repeat these experiments at least

three times for each device. In total we have performed 487 power

experiments across both labs.

Interaction experiments. To understand the information ex-

posed while interacting with a device, we conduct interaction exper-
iments. These consist of actively interacting with IoT devices and

then labeling the captured traffic with the interaction name. For

each of these experiments we first wait for the device to be powered

on for at least two minutes (to avoid including power experiments

traffic). After two minutes, and right before the interaction starts,

we begin capturing the traffic and continue to do so for the entire

duration of the interaction (the exact amount of time depends on

the device and the interaction method, i.e., the duration of a phys-

ical/app/voice interaction), plus at least additional 5-15 seconds

after the interaction has completed.

The type of interactions we consider for these experiments are

the following: (i) local action, which consists of physically inter-

acting with the device, or using voice commands (without using a

voice assistant from a separate device). (ii) LAN app action, by using

a companion app on a phone connected to the same network as the

IoT device, thus allowing direct communication between the phone

and the IoT device; (iii) cloud app action, by using a companion app

on a phone connected to a different network than the IoT device, to

force the IoT device to use cloud infrastructure to communicate;

(iv) voice command action, by using voice commands to trigger the
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Echo Spot’s Alexa voice assistant, which subsequently interacted

with the device according to the voice command.

The majority of interaction experiments that involve the use of

a companion app or a voice command have been automated and

repeated at least 30 times, resulting in a total of 32,030 automated

interaction experiments across both labs. Experiments that involve

physical interactions or whose interactions cannot be automated

safely or reliably (e.g., devices in the appliances category having a

heating element) have been performed manually and repeated at

least three times, resulting in a total of 2,069 manual interaction

experiments across both labs.

Idle experiments. Beyond the initial powering on phase, one

might expect that an IoT device would have minimal information

exposure when it is not actively being used. To test whether this

intuition holds, we conduct idle experiments that capture the traffic

of an IoT device when it is not actively used and is located in an

environment isolated from human interaction. Our idle periods

cover an average of 8 hours per night for one week for each lab.

Uncontrolled experiments (US only). These experiments

consist of capturing all the (unlabeled) traffic generated by the

IoT devices in the US testbed during an IRB-approved user study,

where 36 user study participants are allowed to use the IoT devices

for their intended purpose in a studio apartment setting. These

participants are 5 faculty/postdoc and 31 students at Northeastern

University’s Cybersecurity and Privacy Institute in Boston. Partici-

pants may use the lab at any time (except during the period where

we conducted idle experiments), and they may use any device in the

room as they see fit. Commonly used devices include the refrigera-

tor, laundry machines, and microwave, while the Alexa devices and

motion-triggered devices are also frequently active. Collectively,

we typically see about 20-30 lab accesses per day, with at least

one active device interaction per access. A common interaction

pattern is a person that enters the lab to put their food in the smart

fridge (or to put their laundry in the washer), then they come again

later to reheat it in the smart microwave (or to move their laundry

to the dryer). These common interaction patterns do not trigger

just the devices that the participants are actively using, but also

smart cameras, smart doorbells, smart motion/contact sensor, and

smart lights, which are always active and passively triggered by

the simple presence of the participant.

We use a subset of the user study data collected between Sep-

tember 2018 and February 2019 (inclusive). We filter out any power

and interaction experiments conducted during this period. The

uncontrolled experiments were conducted on the US testbed only.

To measure regional differences in IoT traffic, we use two ap-

proaches. First, we compare information exposed by the common

devices across the UK and US labs. Any differences in informa-

tion exposure could be explained by factors such as differences

in hardware/firmware sold in different markets, egress IP address,

server selection based on IP address or location, and data protection

regulations in each jurisdiction. Second, we use the VPN connec-

tion between labs to compare US devices egressing into the public

Internet via a US IP address, and the same devices egressing via

a UK IP (and vice versa for the UK lab devices). In this case, the

hardware/firmware and jurisdiction are identical in each pair of sce-

narios, but the egress IP address (and server selection based on the

IP) vary. We combine observations across these scenarios to help

identify likely root causes for observed differences in information

exposure.

4 DESTINATION ANALYSIS
In this section, we characterize IoT devices in terms of the destina-

tions of their network traffic in order to answer the RQ1. Our focus

is on which parties are contacted (as defined in §2.1), their geoloca-

tion, and what are the most common non-first-parties contacted.

4.1 Measuring Destinations
In this section we analyze the destination IP address of IoT device

traffic according to whether the destination is a first party, third

party, or support party.
1
In addition, we consider the geolocation

of those destinations (in terms of inferred country), because traffic

traversing international boundaries may be subject to different

domestic surveillance regulations, and because different countries

may impose different restrictions on content providers. We use

the following approach to label the party and geolocation for a

destination IP.

Second level domain name (SLD). For each flow from a de-

vice, we determine the SLD by first identifying whether the destina-

tion IP address corresponds to a DNS response for a request issued

by the device. If so, we use the SLD for the corresponding DNS

lookup; otherwise, we search HTTP headers (Host field) and/or

TLS handshakes (Server Name Indication field) for the domain. If

none of the above approaches yields a domain, we leave the IP’s

SLD unlabeled.

Identifying organization name. We identify the organiza-

tion name for an SLD using either WHOIS data or common-sense

matching rules (e.g., “Google” is the organization for google.com). If

we could not identify an SLD for a domain, we set the organization

to the owner of the IP address as reported by the corresponding

regional registry (e.g., RIPE for European IPs).

Determining party type. If the IP’s organization identified

in the previous step matches the name, manufacturer, or related

company to the IoT device, we classify it as a first party. If not,

we manually search for public information about the party. If the

company states on its website that it is specialized in providing con-

nectivity (CDN) or cloud services (e.g., Amazon AWS), we consider

the party a support party. In any other case we consider the party

a third party.

Determining party country. We use the Passport [36] tool,

which is able to infer the country containing a destination IP address

by combining traceroute data with other IP geolocation sources.

We do not use public geolocation databases alone, which we found

to be highly inaccurate when manually validating results.

4.2 Destination Characterization
Table 2 shows the number of unique destinations for each type of

experiment contacted by the US and UK devices. The first column of

the table shows the type of experiment, the second column the type

of party (support vs third), the remaining columns indicate values

referring to a group of devices using the following notation that

1
We ignore network traffic sent inside the LAN, as this is outside the set of privacy concerns we

defined in the previous section.
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Experiment Party US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Idle Support 40 38 28 23 44 38 31 20

Third 4 3 4 3 3 2 3 2

Control Support 85 82 71 66 76 71 66 57

Third 7 4 5 4 7 3 5 3

Power Support 39 39 29 29 33 35 21 24

Third 4 3 3 3 4 3 4 3

Voice Support 8 10 5 5 7 5 2 3

Third 0 0 0 0 0 0 0 0

Video Support 34 29 25 21 31 26 27 19

Third 0 0 0 0 0 0 0 0

Total Support 98 87 74 70 93 84 72 69
Third 7 5 5 5 7 5 5 5

Table 2: Number of non-first parties contacted by devices,
grouped by experiment type (first column), party type (sec-
ond column) across lab location and network connectivity
(right columns).

we will use for the remainder of the paper: “US” and “UK” headers

represent all US and all UK devices, US∩ and UK∩ headers represent

only the US and UK devices that are in common between the two

labs, headers prefixed with “VPN” indicate that those devices are

connected to the Internet using the VPN link (meaning that US

devices reach the Internet via the public IP address of the UK testbed,

and vice versa).

The table shows that control experiments lead to more commu-

nication to support and third parties when compared to other types

of experiments. Among them, the power experiments represent

the majority of the communications with third parties, likely due

to devices establishing initial connections with destination parties.

During the power experiments devices in the US contacted net-
flix.com, tuyaus.com (a Chinese IoT provider), nuri.net (a Korean
ISP), and facebook.com. UK devices communicate with nuri.net, net-
flix.com, and doubleclick.net. During the control experiments there

are two third parties contacted only by US-based devices: omtrdc.net
(a tracking service owned by Adobe) and mixpanel.com (another

tracking service), and one contacted only by the UK-based devices:

wowinc.com (a US ISP). The latter is a Wansview camera, which we

observed to contact IPs in many residential networks.

The total number of contacted parties (bottom rows) in the US

is greater than the same for the UK. The Wansview camera con-

tacts the largest number of destinations (52 unique destinations),

followed by Samsung TV (30), Roku TV (15), and TP-Link plug (13).

Interestingly, when US devices are connected via the UK net-

work (using VPN), they contact a lower number of parties. Among

them: branch.io (tracking service), fastly.net (CDN), edgecastcdn.net
(CDN owned by Verizon), and hvvc.us (cloud hosting). Branch.io is
contacted by Fire TV, TP-Link plug and TP-Link bulb during the

power experiment.

Table 3 shows the number of unique destinations per category

in the two datasets. TVs (i.e., Samsung TV, LG TV, Roku, Fire TV)

contact the largest number of third parties among all device cate-

gories.

Figure 2 shows the flow of traffic from the devices common to

the US (left) and UK (right) labs, with the height of each band corre-

sponding to the number of bytes transferred. Results are grouped by

the device category (left middle and right middle) and terminate at

destination countries/regions (center). A majority of device traffic

terminates in the US for both the US and UK labs, likely due to

reliance on infrastructure with limited geodiversity.

Category Party US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Appliances Support 5 3 - - 8 5 - -

Third 1 0 - - 1 0 - -

Audio Support 8 8 3 5 11 7 5 4

Third 0 0 0 0 0 0 0 0

Smart Hubs Support 9 9 5 4 9 7 5 3

Third 0 0 0 0 0 0 0 0

Home Support 10 14 10 11 6 12 6 8

Automation Third 1 1 1 1 1 1 1 1

Cameras Support 49 50 39 37 44 46 38 34

Third 1 2 1 2 2 2 2 2

TV Support 18 18 16 18 17 16 16 16

Third 4 2 3 2 3 2 3 2

Table 3: Number of non-first parties contacted by devices,
grouped by device category (first column), party type (second
column). Right columns specify lab location and network
connectivity.

Figure 2: Volume of network traffic between the US (left)
and UK (right) labs to the top 7 destination regions (center),
grouped by category (middle left and right). Most traffic ter-
minates the US, even for the UK lab; many devices send traf-
fic to countries outside of their testbed’s privacy jurisdiction.

Domain US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Amazon 31 24 16 17 31 24 16 17

Google 14 9 10 8 16 10 11 8

Akamai 10 6 6 5 10 6 6 5

Microsoft 6 4 1 1 6 4 1 1

Netflix 4 2 3 2 4 2 3 2

Kingsoft 3 3 1 1 4 3 1 1

21Vianet 3 3 1 1 4 3 1 1

Alibaba 3 4 2 2 4 4 2 2

Beijing Huaxiay 3 3 1 1 3 3 1 1

AT&T 2 0 1 1 0 0 0 1

Table 4: Organizations contacted by multiple devices.

US devices contact 13 overseas countries and several countries in

the EU, while devices from the UK contact only 7 overseas countries

including the US. From the oversea countries, most of the traffic is

sent to China as many Chinese devices rely on the services provided

by the Alibaba Cloud.

4.3 Commonly Contacted Destinations
Next, we analyze which non-first-party domains and companies are

contacted by the largest number of devices. These parties can learn

a great deal about the devices in a home and how they are used.
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Even the knowledge of a significant subset of devices in a given

home could be used to profile users for data-driven algorithms such

as targeted advertising.

For this analysis, we focus on the destination organization, e.g.,
nest.com and google.com belong to the Google organization that

owns both properties. A single device may contact multiple or-

ganizations, e.g., the Samsung TV contacts two non-first-party

organizations: Netflix (a third party), and Amazon AWS (a support

party), which hosts Netflix.

Table 4 lists the ten companies contacted by the largest number

of devices. We find that 31 devices in the US and 24 in the UK

contact at least one server that belongs to Amazon, largely due to

their reliance on AWS for hosting servers. The next-most commonly

contacted organizations are also hosting providers: Google, Akamai,

and Microsoft. Thus, a substantial contributing factor to the amount

of information exposed to non-first-parties is the use of supporting

parties that provide computing resources.

Nearly all TV devices in our testbeds contacts Netflix even though
we never configured any TV with a Netflix account. This, at the very
least, exposes information to Netflix about the model of TV at a

given location. The bottom half of the table (apart from AT&T)

consists of Chinese counterparts to Amazon and Google. These

servers are predominantly contacted by devices designed by Chi-

nese companies.

Generally, connecting a device to the Internet via a VPN did

not lead to significant differences. The only unexpected case was

the US based Xiaomi Rice Cooker contacted Kingsoft only when

connected via VPN, normally it contacts Alibaba cloud service.

4.4 Takeaways
When focusing simply on the destinations contacted by IoT devices,

we identified a number of privacy concerns. Several non-first-party

destinations (in particular Amazon, Google, and Akamai) receive

information from many of our IoT devices, thus allowing them

to potentially profile consumers. For example, these companies

not only can learn the types of devices in a household, but also

how/when they are used, simply by analyzing the network traffic

from IoT devices to their cloud services (see §6.3). We observe

substantial outsourcing of computing resources to cloud providers,

particularly for camera devices; further, we found TVs comprise the

largest fraction of third party communication (likely to customize

content for users). Regarding regional differences, we note that

US devices tend to contact more non-first parties, possibly due to

more relaxed privacy regulations with respect to the EU. VPNs

had minimal impact on the type of party contacted, with most

differences likely being due to serving content using replicas closer

to the VPN egress.

5 ENCRYPTION ANALYSIS
In this section, we analyze whether devices send data securely

by studying the use of encryption by IoT devices in our testbed.

Adoption of encryption would be easy to measure if most network

traffic in the IoT environment used easily-identifiable protocols such

as HTTP, HTTPS, and QUIC. However, standard protocol analysis

tools (e.g., Wireshark’s protocol analyzer) fail to classify nearly

half (46%) of the network traffic originating from our testbeds.

We address this problem using entropy analysis, then use it to

characterize the volume of traffic sent securely by each device.

5.1 Identifying Encrypted Traffic
We start by using Wireshark’s protocol analyzer to identify TLS

(excluding handshakes) and QUIC traffic as encrypted. Wireshark

does not identify other encrypted protocols. Certain unclassified

network traffic contains encoded or compressed content (e.g., video,

audio, gzip compression). We search for encoding-specific bytes in

headers of such flows, and mark any traffic that contains them as

unencrypted.

For the remaining flows, we do not have ground truth as to

whether the traffic is encrypted. Therefore, we infer the use of

encryption on those flows by measuring their byte entropy H ,

whose value is between 0 and 1 with higher value meaning byte

sequences that are more similar to random.

By analyzing the entropy of some randomly sampled traffic

(e.g., encrypted traffic consisting of HTTPS flows and HTTP flows

containing encrypted payload, and unencrypted traffic consisting of

HTTP flows containing textual payload), we found that the average

entropy H for the payload of encrypted traffic is Henc = 0.85 (σ =
0.009,min = 0.80,max = 0.86), while the entropy of unencrypted

textual traffic is substantially lower but has higher variance, with

average of Hunenc = 0.25 (σ = 0.09,min = 0.12,max = 0.39).
We conducted additional tests of encrypted and unencrypted

content (namely, IMC 2019 web pages) to understand how entropy

varies across encryption algorithms and cipher suites. The entropy

of the unencrypted content is Hunenc = 0.55 (σ = 0.07,min =
0.35,max = 0.62). First, we used 14 cipher suites

2
available us-

ing python’s TLS implementation, which resulted in Henc = 0.85

(σ = 0.02,min = 0.80,max = 0.87). While HTTPS encryption is

popular, other encryption schemes might yield substantially dif-

ferent entropy ranges. To investigate this, we used the python

symmetric encryption library cryptography/fernet to encrypt the
same set of IMC 2019 website content. We found the entropy of such

encrypted content led to an average Henc = 0.73 (σ = 0.025,min =
0.67,max = 0.75). Importantly, the differences in entropy values

between TLS and fernet encryption are relatively small, and in both

cases the gap between encrypted and plaintext entropy is large.

Based on these observations, we cannot identify a single thresh-

old that will always classify encrypted and unencrypted payloads

correctly. In light of this, we chose conservative thresholds for

whether a connection is encrypted or not, with the goal of reduc-

ing false positives/negatives while relegating remaining cases to

an “undetermined” class. Specifically, we classify traffic having en-

tropy H>0.8 as likely encrypted, H<0.4 as likely unencrypted, and
0.4≤ H ≤0.8 as unknown, which corresponds to undetermined

encryption status.

We acknowledge that there are likely better alternatives for

selecting thresholds. To facilitate future experimentation on this

topic, we have made our datasets and code public so that others

may investigate the suitability of different thresholds, including

our current selections.

Note that the above analysis assumes substantial differences in

entropy between unencrypted and encrypted content. We found

2
This comprises all ciphers that successfully transmitted data; the full list is available in our public

data.
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Enc Range US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

>75 0 0 0 0 0 0 0 0

50-75 1 1 0 0 2 0 1 0

25-50 4 1 1 1 3 2 0 1

✗

<25 41 31 24 24 41 31 24 24

>75 7 7 5 5 4 5 3 3

50-75 5 7 4 6 7 8 5 7

25-50 10 5 5 4 12 5 7 5

✓

<25 24 14 11 10 23 15 10 10

>75 16 10 8 7 17 11 8 7

50-75 11 6 5 5 11 5 5 4

25-50 11 7 6 5 13 10 8 9

?

<25 8 10 6 8 5 7 4 5

Table 5: Number of devices by encryption percentage in
quartile groups across lab and network.

that this assumption does not hold for media content, e.g., in our

experiments with recording videos from a mobile device we found

that Hunenc = 0.873 (σ = 0.0005,min = 0.871,max = 0.874). Thus,

for cases of media (audio/video) content that are not filtered out

using recognized encodings, we use their network traffic patterns

to identify and exclude them from this analysis using the technique

described in Section 6.

5.2 Encryption Adoption
In this section we analyze the adoption of encryption by our US

and UK devices. First, we show the fraction of the traffic that we

recognize as unencrypted, encrypted, or unknown. Then, for unen-

crypted traffic we identify patterns among device categories and

activities.

Overall adoption. Table 5 shows the number of IoT devices

that have a particular fraction of their data unencrypted (first row

✗), encrypted (second row ✓), and unknown (third row “?”). Each
subrow represents the fraction of the traffic we consider for the

classification, using quartiles. The first two columns consider the

set of all US and UK devices, the third and fourth columns consider

the set of all US and UK devices in common in both testbeds. The

remaining columns show the same data of the first four, but using

VPN egress.

The table shows some positive trends: no devices have more

than 75% unencrypted traffic, and just one of them (in each testbed)

have more than 50%, while 7 devices (in each testbed) have more

than 75% encrypted traffic. We also observe some negative trends

that reveal possible information exposure: 5 devices in the US and

2 in the UK send more than 25% unencrypted traffic, while all

but 8 devices US and all but 10 devices in the UK send more than

25% unknown traffic. This last point motivates the need for better

protocol analyzers to understand just how much of this unknown

traffic is encrypted. If we consider the devices in common between

the US and UK, and the VPN experiments we see similar trends,

meaning that except for some isolated cases we will discuss in the

next paragraph, there are no significant regional differences in the

distribution of encrypted, unencrypted, and unknown traffic for

the same devices.

Adoption by category. We now analyze information exposure

in terms of unencrypted data exposed by devices according to their

category. Table 6 shows the percentage of data exposed in aggregate

by all devices in each category (rows), partitioned into different

Enc Type US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Appl- 7.1 0.3 0 0 7.6 0.3 0 0

Audio 1.4 1.7 1.5 2.1 1.7 1.6 1.8 2.0

Hubs 2.7 4.5 2.3 4.5 3.1 4.3 2.9 4.3

Auto 7.1 6.0 9.8 7.9 9.3 4.5 11.4 6.1

Cam 11.1 10.3 0.7 0.2 10.8 3.9 0.6 0.3

✗

TV 8.0 12.2 9.3 12.2 16.0 12.6 18.1 12.6

Appl- 26.9 11.4 0 0 26.5 2.9 0 0

Audio 61.2 61.8 57.6 54.0 54.1 54.7 49.6 43.6

Hubs 24.9 18.2 19.3 18.2 28.9 21.4 24.8 21.4

Auto 29.1 51.0 42.7 55.0 28.4 49.6 42.2 53.6

Cam 9.6 14.6 22.6 25.4 8.9 13.3 21.4 23.1

✓

TV 61.2 73.8 64.4 73.8 40.7 59.7 41.3 59.7

Appl- 63.3 55.0 88.1 50.1 63.2 63.5 87.8 50.0

Audio 36.0 36.5 39.2 43.8 41.1 43.8 44.8 54.4

Hubs 71.9 77.2 77.8 77.2 67.5 74.2 71.6 74.2

Auto 57.3 37.9 36.0 30.1 55.9 41.2 34.8 33.9

Cam 76.8 69.4 70.8 64.4 77.5 76.5 71.1 65.7

?

TV 30.7 13.9 26.3 13.9 43.3 27.7 40.6 27.7

Table 6: For each device category, the average percent of
bytes sent unencrypted by corresponding devices.

experiment locations and egress configurations (columns). A key

observation is that cameras collectively expose the largest fraction

of unencrypted bytes (up to 11% in the US testbed), most of which

come from the Microseven camera and Zmodo doorbell in the US,

and the Spy camera in the UK, which are not common to both

testbeds. The next largest fraction of unencrypted bytes (7.1% in

the US and 6.0% in the UK) come from home automation devices

(e.g., D-Link movement sensor) and appliances (mostly Samsung

washer and dryer). On the other end, audio devices tend to use the

most encryption (more than 60% on both testbeds), likely because

they are built and designed bymajor corporations (e.g., Amazon and

Google) known to have high security standards. Another important

observation is that appliances, home automation devices, and smart

hubs have the largest portion of unknown traffic. After a manual

investigation we found that such devices have a larger fraction of

proprietary protocols not known to Wireshark, which are often

partly encrypted, making the entropy analysis inconclusive and

motivating future investigation.

The Samsung TV and FireTV are the isolated cases showing a

significant difference in encrypted traffic depending on whether

they are connected to the Internet directly or via VPN (Table 7). We

suspect this occurs because the TVs detect the device geolocation

based on egress IP, and customize content displayed to the user

(e.g., available streaming services and content) based on the inferred

country. We have validated this hypothesis by manually observing

what these TVs show when they are powered on and used: the

content displayed clearly reflects the region corresponding the

public IP address of the device and, in the case of VPN experiments,

they advertise services and interactive content that is normally

not available without using the VPN. Turning off the VPN and

restarting the device is able to restore the previous content and

behavior.

Encryption analysis by experiment type. We now investi-

gate whether the experiment type has any impact on the fraction

of (un)encrypted bytes sent. Our results, reported in Table 8, show

video having the lowest fraction of encrypted bytes and voice inter-

actions having the highest. This is similar to the category analysis
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Device US UK VPN
US→UK UK→US

TP-Link Smartplug 18.6 8.7 23.4 12.0
TP-Link Bulb 13.1 12.8 17.2 5.9
Nest Thermostat 11.6 15.8 11.3 10.5
Smartthings Hub 6.7 16.6 5.2 14.6
Samsung TV 7.1 4.5 10.1 1.4

Echo Spot 2.3 1.9 2.6 2.1

Echo Plus 1.8 2.9 1.8 2.4
Fire TV 0.8 0.6 5.2 1.0

Echo Dot 0.7 2.6 1.2 2.7
Yi Camera 0.5 0.5 0.9 0.5
Samsung Dryer 28.1 - 29.3 -

Samsung Washer 27.3 - 28.6 -

D-Link Movement Sensor 14.9 - 24.6 -

Table 7: Average percentage of unencrypted bytes per device.
The topmost devices are common devices to both testbeds,
while the last three exist only in the US lab. Text decora-
tion indicates statistically significant differences across the
following categories: Bold indicates differences when using
VPN; Italic means differences between US and UK.

for TVs and audio devices (i.e., video interactions and the camera

category are analogs, as are voice interactions and audio devices).

The other experiments, which do not have interactions directly

mapped to specific categories, do not show a clear trend, meaning

that the differences in encryption are mostly due to the device itself,

and not to the type of experiment.

This observation also holds for common devices in different

regions. However, we notice less significant trends that may require

further investigation to understand the underlying reasons: power

experiments are the easiest to classify using entropy analysis and

show the highest percentages of both unencrypted (>8.2%) and

unencrypted (>33.0%) traffic. We also observe differences when

devices are connected via VPN (e.g., for encrypted and unencrypted

traffic of video devices). These differences show no clear patterns

and are likely due to changes in device behavior (e.g., similar to

different content/functionality as seen with TVs) when the device

detects a different region.

5.3 Takeaways
While unencrypted traffic is a minority of all traffic, we identi-

fied substantial information exposure via plaintext traffic for all

devices, categories, interactions, and regions. Most differences in

unencrypted traffic across device category and device interactions

are due to specific devices, rather than being endemic of an entire

category of device. We observed regional differences in the use of

encryption, especially in devices in the TVs category, since they in-

teract with different content providers depending on their detected

region.

6 CONTENT ANALYSIS
In this section, we analyze the information exposed to other parties

by IoT devices as defined in RQ3 (inferring unencrypted content)

and RQ4 (inferring encrypted content). Specifically, we focus on the

network traffic for two content types: textual PII contained in unen-

crypted network traffic (e.g., names, e-mail addresses, locations as

Enc Exp (#D) /% US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Control (79) 5.4 4.8 4.2 5.0 6.6 4.3 5.4 4.5

Power (78) 8.2 10.2 8.3 8.7 11.2 11.5 11.3 10.2

Voice (18) 2.8 1.4 2.8 1.8 4.0 2.3 4.0 2.9

Video (19) 6.9 2.7 0.8 0.4 7.6 1.9 0.7 0.3

Others (78) 4.8 4.4 4.2 5.3 5.8 3.5 5.3 4.3

Idle (81) 5.4 5.0 4.5 4.2 5.9 5.7 5.2 4.1

✗

Uncontrol (46) 3.9 - - - - - - -

Control (79) 27.6 33.2 32.8 34.4 27.5 31.7 33.3 32.7

Power (78) 33.0 42.6 38.2 43.5 27.1 35.2 32.5 37.2

Voice (18) 58.7 67.4 53.2 62.9 48.0 60.8 44.8 55.2

Video (19) 9.2 15.1 18.6 22.8 8.5 13.3 16.3 20.0

Others (78) 29.0 34.0 33.2 33.9 30.0 33.7 35.2 33.1

Idle (81) 26.3 21.8 32.4 25.6 18.7 17.9 22.2 19.7

✓

Uncontrol (46) 29.1 - - - - - - -

Control (79) 66.8 60.4 62.6 59.0 65.7 63.6 60.9 62.3

Power (78) 58.8 47.2 53.5 47.8 61.7 53.3 56.2 52.6

Voice (18) 38.5 31.2 44.0 35.3 48.0 36.9 51.2 41.9

Video (19) 83.8 82.2 80.6 76.8 83.9 84.8 83.0 79.7

Others (78) 65.9 59.3 62.1 58.7 63.9 62.2 59.0 61.9

Idle (81) 68.2 73.1 63.1 70.2 75.4 76.3 72.6 76.2

?

Uncontrol (46) 67.0 - - - - - - -

Table 8: Percent of bytes sent unencrypted, grouped by ex-
periment type. Number of devices considered in each row is
in parentheses in the first column.

identified), and device activity that can be inferred from encrypted

network traffic (e.g., video is streaming from a video doorbell). For

the latter, we build, evaluate and use a machine learning classifier

that leverages network traffic statistics as features, and our ground-

truth experiment labels for detection. We then analyze the potential

privacy implications of such information exposure.

6.1 Identifying PII and Device Activity
We use the following techniques to identify PII and device activity

in network traffic.

Textual PII in unencrypted traffic. To identify PII exposed in

plaintext, we simply search for any PII known (in various encodings)

in each device’s network traffic. For the purpose of this analysis PII

includes device identifiers (e.g., MAC address, UUID, etc.), and any

personal information given at registration time (e.g., names, email

address, home address, phone number, username, password, etc.).

Device activity inference (encrypted or unencrypted). To

infer the device activity based on network traffic (regardless of

whether it is encrypted), we train a random forest machine learning

classifier using experiment labels and network traffic for each device

interaction. Examples of device activity that is contained in our

labels include power on a device, issue voice command, view video

stream. The set of features we use to train our classifier are timing
statistics of the traffic with respect to packet sizes and inter-arrival

times. The statistical proprieties we consider as features are the

following: min, max, mean, deciles of the distribution, skewness, and
kurtosis. We focused on features that avoid dependencies on text- or

size-based features that can easily vary across deployment location

(e.g., due to different hostnames selected as part of location-based

server redirection), while still yielding high accuracy under cross-

validation.

We observed that experiments from certain devices contain net-

work traffic resulting directly from the experiment interaction, as

well as network traffic that is unrelated to the experiment (e.g.,

time synchronization via NTP). Thus, we leverage multiple interac-

tions (30 automated tests, 3 manual tests) for each interaction type,
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to mitigate the effects of such traffic noise. The large numbers of

tests in the automated cases also provide enough samples to apply

cross-validation, thus allowing us to evaluate the accuracy of our

method.

6.2 Textual Unencrypted Content
We found limited identifiable content, and even less PII, in unen-

crypted traffic. This is good news, particularly compared with prior

work that identified substantial amounts of PII exposed in plaintext

in other contexts (e.g., mobile apps and web sites [25, 37]).

Nonetheless, we found notable cases of PII exposure. This in-

cluded various forms of unique identifiers (MAC address
3
, UUID, de-

vice ID), geolocation at the state/city level, and user specified/related

device name (e.g., John Doe’s Roku TV). A notable case that we

found in our US lab is the Samsung Fridge sending MAC addresses

unencrypted to an EC2 domain, which is a support party in the

best case. The implication is that it is now possible for an ISP to

track this device.

In both our labs we found that Magichome Strip is sending its

MAC address in plaintext to a domain hosted on Alibaba. Interest-

ingly, the Insteon hub was sending its MAC address in plaintext to

an EC2 domain, but only from the UK lab. We did not find similar

behavior in the US lab. Interestingly, each time the Xiaomi camera

detected a motion, its MAC address, the hour and the date of the

motion (in plaintext) was sent to an EC2 domain. We also noted

that a video was included on the payload.

We investigated the content of plaintext communication that

did not contain PII, and found that common cases included queries

related to device actions (e.g., turn on/off the device or issue a

command to the device). We also identified large unencrypted file

transmissions that contained firmware updates and/or metadata

pertaining to initial device set up.

6.3 Device Activity Inference
In this section, we describe how we trained machine learning clas-

sifiers to estimate how much device activity can be inferred based

on network traffic. Note that we do not claim (or attempt) to pro-

duce the most performant classifiers according to metrics such as

accuracy or F1 score. Rather, we use such metrics to understand

whether device activities are inferrable as explained below.

To reliably infer device activity, we first validate our machine

learning classifiers using 7/3 split cross validation (i.e., train on

randomly selected 70% of the data and test on the 30% remaining

data, and we repeat the process for 10 times to get the average

metrics). Then we use the F1 score, defined as the harmonic mean

between precision and recall, as a quality metric to evaluate the

effect of false positives and false negatives for the detection of the

activities of a device, where F1 = 0 is the worst score and F1 = 1 is

the best score. We calculate the F1 score for the prediction of each

activity of the device (defined as the F1 score for the activity), and

the F1 score across all activities for each device (defined as the F1

score for the device). We consider an activity or device as inferrable,
when its F1 score is greater than 0.75.

Predictable devices per category. Table 9 shows the number

of devices whose actions aremostly all inferrable using our classifier.

3
Note that MAC addresses can be used to identify a device vendor, which in some cases may

uniquely identify the device.

Category (#D) US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Appliances (10) 2 0 0 0 1 0 0 0

Audio (11) 3 1 2 0 3 3 2 3

Cameras (17) 8 6 3 3 10 6 4 3

Home Auto (16) 0 1 0 0 1 1 1 0

Smart Hubs (14) 1 0 1 0 1 0 1 0

TV (8) 5 3 3 3 5 4 3 3

Table 9: Number of inferrable devices (F1 score > 0.75),
grouped by category. Total number of devices per category
in parenthesis in the first column.

Exp (#D) US UK US∩ UK∩ VPN
US→UK UK→US US∩ UK∩

Power (75) 41 30 20 22 42 32 21 22

Voice (17) 10 6 6 4 9 6 5 5

Video (19) 11 7 5 4 11 7 5 4

On/Off (45) 9 5 5 3 9 7 6 5

Movement (19) 9 5 4 4 8 5 3 4

Others (52) 19 14 13 10 20 15 12 10

Table 10: Number of inferrable activities (number of devices
with such an activity in parentheses), aggregated by activ-
ity group. We consider an activity for a device is inferrable
when its F1 score is >0.75.

Cameras have the largest fraction of inferrable devices, followed

by television devices, and audio devices. We believe this is due to

the fact that cameras, TVs, and audio devices produce the most

traffic during interactions, and this provides more samples to better

train our classifier. If we look at the regional comparison between

common devices in Table 9 we can see that in most cases we have

some differences in the number of inferrable devices across regions

(for example, 2 audio devices are inferred in the US and 0 in the UK).

We observe this pattern of slight differences also if we compare each

lab with and without VPN connectivity (for example, 2 appliances

can be inferred in the US lab without VPN, and 1 with the VPN).

Devices with reliably inferrable activities. Table 10 shows

the number of devices whose activities we can reliably infer. We

find that the “Power” activity is the most inferrable, due to the

unique traffic patterns that characterize it, followed by video and

movement activities (due to the large amount of data that interact-

ing with cameras produce). Each of these types of activities can

be considered sensitive, as they indicate presence and activity in

a home or other deployment space—information that can be read-

ily inferred by a network eavesdropper. Regarding the regional

comparison, Table 10 also shows that there are differences in the

number of inferrable devices across regions (for example, 41 power

experiments are inferrable in the US and 30 in the UK). Similarly to

the previous case, we also observe differences in inferrable devices

with and without VPN (for example, we can infer 9 devices offering

movement activities without VPN, and 8 with the VPN).

6.4 Takeaways
We analyzed both unencrypted and encrypted content in this sec-

tion. First, we found very limited sensitive or personal information

exposed in plaintext—a welcome observation given the sensitivity

of data potentially exposed by such devices. Second, we found that

even when devices use encryption, the timing patterns of their

network traffic permits reliable identification of the interactions

that caused the network traffic. Put another way, an eavesdropper
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can reliably learn a user’s interactions with a device across a wide

range of categories, opening the potential for profiling and other

privacy-invasive techniques. There are differences in inferrability

across regions, a topic that warrants further investigation as part

of future work.

7 UNEXPECTED BEHAVIOR
In this section we use the activity prediction methodology devel-

oped in §6 to detect unexpected behavior in idle and uncontrolled

experiments.

7.1 Measuring Unexpected Behavior
We define unexpected behavior as cases when a device generates

network traffic corresponding to an interaction that either did not

occur, or was not intended by the user. To identify which network

traffic corresponds to an interaction with an IoT device, we use our

device activity inference approach on the traffic generated by idle ex-
periments and uncontrolled experiments. In idle experiments there is

no interaction with devices, so any inferred activity reveals possible

privacy concerns due to any user monitoring activity. For our IRB-

approved user study, we have some ground truth about user/device

interactions (e.g., by asking users, watching users recordings, in-

specting logs, and notifications produced by the device). We can

compare such ground truth to what was inferred, thus allowing us

to determine whether the detected activity is expected or not.

To identify activities from unlabeled network traffic, we must

divide network traffic from a device into units amenable to classifi-

cation. Choosing a value that is too small provides too little data for

classification; a value that is too large may merge traffic together

from multiple activities, and thus inhibit correct classification. For

this study we use an empirically derived traffic unit of classifica-
tion: a sequence of packets containing inter-packet interval greater

than 2 seconds. To focus our analysis only on the most significant

predictions, we use only the most accurate models based on cross-

validation in §6; namely, only those with an F1 score > 0.9. During

idle experiments, our model identified activities for 21% and 69%

traffic units, depending on the location of the device and its network
egress.

7.2 Idle Experiments
Table 11 shows the number of reliably predictable activities we

have predicted during around 30 hours of idle experiments (details

in the first row of the table). The most commonly detected activities

are: “power” activities across all devices, “menu” activities from

TVs (i.e., the act of navigating the home menu screen of the TV),

and “move” activities for some cameras (i.e., the act of moving in

front of a camera). We can also notice several less common and/or

specialized activities (such as “view inside the fridge”).

The large number of “power” activities is due to devices that

frequently disconnect and reconnect to the Wi-Fi network (which

we verified using DHCP server logs). When a device reconnects,

it performs a new handshake with its cloud services similarly to

when it is powered on. Thus, we do not consider power activities

as unexpected or suspicious.

We believe that “menu” activities are explained by TVs that

occasionally refresh the content of their menu page (e.g., showing

new on-demand content available for viewing), much the same

Device Activity US UK VPN
US→UK UK→US

TOTAL HOURS - 28 31 26.75 27

Zmodo Doorbell local move 1845 - - -

Wansview Camera local move 114 130 1 -

Wansview Camera power 4 2 151 -

Roku TV local menu 11 - 3 -

Roku TV android lan remote 1 1 - 43

Roku TV power 1 3 3 1

Ring Doorbell power 1 2 3 3

Google Home Mini local voice 3 - - -

Google Home Mini power - 3 163 5

Samsung Fridge local voice 6 - - -

Samsung Fridge local viewinside 3 - - -

Fire TV android lan menu 6 - 6 -

Fire TV local voice - - 12 13

Echo Spot local volume 5 - - -

Echo Dot power 2 - 3 -

Echo Dot local volume - - 256 -

Apple TV local menu 17 68 12 9

Apple TV local voice - 2 1 3

Sous Vide Cooker power - 65 - 37

Osram Lightify Hub power - 1 4 2

Google Home power - 4 - 3

Echo Plus volume - - - 15

Echo Plus power - - - 3

LG TV local off - - 17 -

LG TV local voice - - 4 -

LG TV android lan menu - - 3 -

Invoke with Cortana local voice - - 4 -

Invoke with Cortana local volume - - 4 -

Netatmo Weather Station android wan graphs - - - 20

Table 11: Number of detected activity instances in Idle exper-
iments (usinghighly accuratemodels only, F1 score >0.9). Ac-
tivities with fewer than 3 detected instances are not shown.

actions taken when the user navigates to the “menu”. We do not

consider this unexpected or suspicious.

The “move” activities are sometimes triggered when there is no

movement in front of a camera and/or movement sensor. In the

case of a camera, the device records a video when it is not triggered

by movement, which is both unexpected and potentially suspicious.

We do not have a root cause for this behavior. A possibility is that

despite our best efforts to isolate each camera from external stimuli,

there is nonetheless something in the lab that is triggering them

(e.g., background noise from other IoT devices). Another possibility

is that the devices capture such video intentionally.

We could not identify root causes for the remaining, rarer, cases

of detected activity. As with any inference technique, ours is poten-

tially subject to false positives and false negatives. Combined with

our lack of ground truth, we cannot say for certain whether these

cases are unexpected or suspicious.

Regional comparison. By comparing the US and UK columns

of Table 11 we can see both similarities and differences in detected

behavior from idle experiments. Differences in power experiments

(such as the Sous Vide Cooker) are explained by different reliability

of the Wi-Fi in the two labs (confirmed using DHCP logs). However,

we could not identify root causes for other differences, and might

be due to non-determinism among common devices across the labs.

There is a noticeable difference in results when using a VPN

egress, particularly smart speakers (both from Amazon and from

Google) and one of the cameras (Wansview). While we were unable

to identify a root cause for these differences, it is an interesting

area for future work.
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7.3 Uncontrolled Experiments
We use the same approach to analyze six months of data from

our uncontrolled experiments generated as part of our user study

in the US testbed. Most of the detected activities correspond to

interactions that we confirm are popular/commonplace in our lab

(e.g., using the microwave, opening/closing the fridge, moving in

the lab). However, due to the large numbers of detected activities

in such categories, it is difficult to manually verify them all.

Instead we focus on the most sensitive and unexpected activities

flagged by our classifier, then manually attempted to trigger the

same (unexpected) behavior. We describe the most interesting cases

observed below.

Ring doorbell. We observed that the Ring doorbell performs a

video recording action every time a user moves in front of it. How-

ever, this is unexpected behavior: the app used to set up the device

does not warn the user that the doorbell performs such recording in

real time, the doorbell offers no indication that recording is occur-

ring, and the only disclosure is in fine print as part of the privacy

policy [38]. Upon discovering this barely documented feature, we

logged into our account to see the video, and learned that we must

pay an additional monthly fee to access such recordings. We have

not identified any way to turn off this feature.

Zmodo doorbell. The Zmodo doorbell uploads camera snap-

shots when the device is first turned on, and also when anyone

moves in front of the device. This feature is undocumented, and we

were unable to prevent such snapshots from being taken, nor we

were able to access them.

Alexa voice assistant. A number of our user study participants

complained that Alexa-enabled devices are frequently triggered dur-

ing normal conversations, as if the keyword had been spoken. Upon

investigation, we found that the default Alexa wake-up keyword

“Alexa” is frequently triggered by many other unrelated words—

much more so than the other voice assistants in our testbeds. A

notable example is a sentence beginning with “I like [s-word]” such
as “I like Star Trek." We understand that this may be a limitation

of voice recognition technology, but it is still a potential privacy

exposure since Amazon devices typically recognize false activations

after sending the whole sentence to their servers (i.e., after such

sentence has been permanently stored).

7.4 Takeaways
While we can only rarely positively identify unexpected behav-

ior, such cases certainly exist, and we identified many cases by

observing idle traffic. We further found notable cases of devices

unexpectedly sending audio or video in our uncontrolled exper-

iments. Our findings highlight that concerns about information

exposed by IoT devices is warranted, as is further investigation into

more accurate device-activity classifiers and the root causes for the

inferred behavior.

8 RELATEDWORK
We now review work related to IoT information exposure.

Traffic characterization. Prior efforts characterize IoT traffic

from different points of view. Several focus whether encryption is

used, and if so, how it is misused. Alrawi et al. [3] analyze traffic

from 45 consumer IoT devices to identify unencrypted traffic and

vulnerability to MITM attacks for encrypted traffic. Jia et al. [19]

find weaknesses communication channels between devices and

companion apps, and between those entities and their cloud ser-

vice. Sivaraman et al. [43] measure encryption and authentication

protocol weaknesses on a set of 24 devices.

Amar et al. [4] characterize network traffic for a handful of

home IoT devices in a idle state. Sivaraman et al. [42] characterize

destinations as first party and third parties, and identify protocols

used by a set of 28 devices. The IoT Inspector tool [1] visualizes and

characterizes volumes and destinations of IoT traffic on the same

IP network.

Our study extends prior work by considering significantly more

devices (81), devices that are usually ignored due to their size and

cost (e.g., large appliances such as fridge, TV, washer and dryer),

large number of experiments (34,586) due to our high level of au-

tomation, and our regional analysis across two testbeds located in

different privacy jurisdictions.

Unexpected behavior detection. Unexpected behavior can

more generally be classified as anomaly detection, a topic of signifi-

cant prior work. Prior work focuses on intrusion detection systems

that detect attacks by using device search engines [40], vulnerability

repositories [46], and machine learning to identify known and un-

known devices [20, 22, 29, 33, 42, 45]. Alternatively, related work fo-

cuses on a policy enforcement approach to detecting anomalies. For

example, the recent Manufacturer Usage Description (MUD) [24]

IETF standard proposal allows manufacturers and other parties

to specify the expected behavior for IoT devices. Ongoing work

addresses the problem of automatically verifying and/or enforcing

the compliance of a given IoT device according to its specification,

as a means to detect and block unexpected behavior [14–16]. Other

approaches for detecting unexpected behavior use machine learn-

ing and other statistical techniques on the device traffic to infer

the type of the IoT devices and their activities, and to profile their

users [2, 41, 44]. Our contribution on unexpected behavior detec-

tion is inspired by these last approaches, but our machine learning

approach uniquely considers interaction method (e.g., the use of

the device locally vs through its companion app vs through a voice

assistant) and includes larger numbers of training experiments.

Other relevant work. Other related work tackles information ex-

posure for different categories of IoT devices: home/office consumer

devices [5, 27], medical devices [49], smart toys [10, 39, 47] as well

as home automation solutions [26, 31]. Several companies offer

commercial solutions to address security issues in IoT, including

privacy exposure [6–8, 11, 12, 17, 18, 21, 28, 30, 34]; however, as

closed solutions little is known about their approach and effective-

ness.

To summarize, our work shares many of the goals and techniques

proposed in prior traffic characterization and anomaly detection

work; however, our primary and differentiating goal is to increase

the scale, experimental rigor, and geographic diversity of such anal-

yses. We accomplish this goal by analyzing a broader range of

devices over different geographic locations and privacy jurisdic-

tions, broader range of interactions/experiments, and supplement

controlled experimental data with uncontrolled experiments from a

6-month of naturally occurring user interactions with our devices.
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9 CONCLUSION
Using the largest known set of controlled experiments (34,586)

comprising 81 devices in the US and UK, along with uncontrolled

experiments consisting of an IRB-approved user study, we are the

first to quantify such information exposure across different net-

works, geographic regions, and interactions with devices.

We observe several promising practices: most of the devices use

encryption or other encodings that protect users’ PII, thus resulting

in an overall minimal PII exposure in plaintext. However, even if

the traffic is encrypted and without relying on MITM or any kind

of IoT device modification, our analysis identifies notable cases of

information exposure: 57.45 % (50.27 %) of the overall destinations

contacted by the US (UK) IoT devices are third or support parties,

and 56 % of the US devices and the 83.8 % of the UK devices contact

destinations outside their region. We further find significant frac-

tions of traffic use encryption or are otherwise unclassified, while

for most devices plaintext traffic is rare (with notable exceptions),

we also identify that encryption does not hide the kinds of interac-

tions that cause a device to generate network traffic, in many cases

allowing an eavesdropper to infer devices in consumer network and

how they are used. We identify unexpected activity from devices

that capture audio and video, and we find several notable cases

where exposure differs based on the location. This study is a first

step toward understanding information exposure by consumer IoT

devices at scale. To facilitate analysis and reproducibility at even

larger scales, our experiment infrastructure, code, and data are

publicly available at https://github.com/NEU-SNS/intl-iot.
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